The Bernoulli Equation

4 Assumptions (I I S S)

- 1) The flow is Inviscid
- 2) The flow is Incompressible
- 3) The flow Is Steady
- 4) We follow a particle along a Streamline

Those are 2 conflicting terms, no? No, because…of 3.

Can you mathematically describe those assumptions?

Lets follow a fluid particle along a streamline*

Fluid Particle are along a stream line S : Tangential Stream Line n : normal Forces considered
(1) Body Force (Weight)
(2) Surface Forces (Pressure)

Why not shear stresses?

Lets draw the FBD.

Two points:

-We consider 'moving' coordinate system (s,n), where s is the position vector

- Do not forget that: s(t) and n(t) !!!

Apply Newton's Second Law

Newton's Law applied to a fluid particle

 $\sum \overrightarrow{F}_{\text{fluid particle}} = m\overrightarrow{a}$

S-direction

Force along S-direction

\n
$$
\overline{Z}F_s = P(s) dA - EP(s+ds) dA - W \sin\theta
$$
\n
$$
= P(s) dA - [P(s) + \frac{d}{ds} ds] dA - \gamma ds dA \sin\theta
$$
\n
$$
= - \left[\frac{d}{ds} \bullet + \gamma \sin\theta \right] dA ds
$$

$$
\sum F_s = -\left[\frac{dP}{ds} + \gamma \frac{d\xi}{ds}\right] dA ds
$$

$$
= \frac{\rho \, dA ds}{mass} \frac{a_s}{A coleartion}
$$

How can you mathematically express acceleration, e.g in *s-direction?*

Velocity along the stream line
$$
V = V(s)
$$

\n $a_s = \frac{dV}{dt} = \frac{dV}{ds} \frac{ds}{dt} = \frac{dV}{ds}V$
\nBecause s(t)...

It should be V=V(s,t), no?

And finally…

$$
\frac{d}{ds} \left[P + \frac{1}{2} g V^2 + \gamma \xi \right] = 0
$$

Which means that:

$$
\Rightarrow \left(\underbrace{\left[P + \frac{1}{2} s V^2 + \gamma' \xi - \frac{1}{2} \text{const}}_{\text{const}} \right] a \text{ long} a \text{ 'stream line} \right)
$$

This is the Bernoulli equation…very powerful tool….

In summary...

Bernoulli Egn:
\n
$$
\overline{F} = m\overline{a}
$$
 applied to
\n \overline{I} inviscid, incompressive, Steady, fluis
\n \overline{I}
\n $\overline{d} = \frac{dP}{ds} - \overline{d} \frac{d\overline{c}}{ds} = \overline{f} \vee \frac{dV}{ds}$
\n $\overline{p + \frac{1}{2}rV^2 + rz} = \text{const}$
\n $\overline{p + \frac{1}{2}rV^2 + rz} = \text{const}$
\n $\overline{p + \frac{1}{2}rV^2 + \frac{1}{2}rV^2}$
\n $\overline{p + \frac{1}{2}rV^2}$
\n $\overline{p + \frac{1}{2}rV^2}$
\n \overline{r}
\n \overline{r} <

Applications: how airplanes fly?

http://nptel.ac.in/courses/112104118/15

Atherosclerosis

Plaque is mainly made up of fat, cholesterol and calcium

• **EXAMPLES OF BERNOULLI EQUATION (B.E.)**

• **And Unsteady B.E.**

So Far...

Assuming: IISS

· no viscous loss (no friction) · no shaft work · no heat transfer · no chenical reaction

 $P_1 + \frac{1}{2}\rho V_1^2 + \rho g Z_1 = P_2 + \frac{1}{2}\rho V_2^2 + \rho g Z_2 = constant$

Example 1: Free Jet in a tank

Step 1: Visualize/draw Streamlines

Step 2: Identify Points of Interest on the Streamlines

Bennoulli Egn. $P_1^7 + \frac{1}{2} P V_1^2 + \gamma E_1 = P_2^7 + \frac{1}{2} P V_2^2 + \gamma E_2^7$

Free JetAt free surfaces $P_1 = 0$, $P_2 = 0$ $Z_1 = h Z_2 = 0$

$$
\frac{1}{2}f'(v_2^2-v_1^2) = Yh = f^2h
$$

$$
V_2^2 - V_1^2 = 2fh
$$

We do not know V₁

Use Conservation of Mass:

$$
V_{2} = \frac{Q}{A_{2}} \qquad V_{i} = \frac{Q_{0}}{A_{i}} \qquad (Continuity)
$$
\n
$$
Q^{2} \left[\left(\frac{L}{A_{i}} \right)^{2} - \left(\frac{L}{A_{i}} \right)^{2} \right] = 2 \, \frac{2 \, \frac{1}{2} \, \frac{1}{2}}{\left(\frac{L}{A_{2}} \right)^{2} - \left(\frac{L}{A_{i}} \right)^{2}}
$$
\n
$$
V_{2} = \frac{Q}{A_{2}} = \frac{1}{2} \sqrt{\frac{2 \, \frac{1}{2} \, \frac{1}{2} \, \left(\frac{L}{A_{i}} \right)^{2} - \left(\frac{L}{A_{i}} \right)^{2}}}{\left[\left(\frac{L}{A_{2}} \right)^{2} - \left(\frac{L}{A_{i}} \right)^{2}} \right]} = \frac{1 \, \frac{1}{2} \, \frac{
$$