BioMEMS (and Microfluidics)

History of MEMS Technology

BioMEMS is a relatively new field...

Image taken from: http://www.rfmems.net/a/MEMS/20100411/58.html

SILICON & ITS DERIVATIVES

Silicon(Si) Silicon Dioxide - SiO₂ (glass) Silicon nitride (Si_xN_y)

• Mechanical Reliability

- Performance
- IC compatibility

METALS

Platinum Silver Chrome and Gold Indium Tin Oxide (ITO)

BioMEMS Materials

Increased
 Functionality
 Integration

(sensors & actuators)

POLYMERS

Photosensitive Polymers (e.g. SU-8) Polydimethylsiloxane (PDMS) Parylene PS PMMA

• Biocompatibility

• Cost

- Surface Modification
- Disposability (e.g. single use devices)
- Rapid Prototyping

Microfabrication Consists of 3 Major Steps: <u>Deposition</u>, <u>Patterning</u>, Removal

- 1. Select a Substrate (e.g. a silicon wafer)
- 2. <u>DEPOSIT</u> the *Structural* Material (usually a few-microns thick film)
- **3.** <u>**DEPOSIT**</u> PhotoResist (PR) (PR is photosensitive to UV radiation)
- 4. <u>PATTERN</u> PR using light (LITHOGRAPHY)

- 5. <u>**REMOVE**</u> the structural material
- 6. <u>REMOVE</u> PR

DRIE of Si – Operation Principle

Etching is performed in cycles of 3 steps:

Deposit Polymer (step 1) : C_4F_8 -based plasma is used to conformally deposit a few monolayers of PTFE-like fluorocarbon polymer across all surfaces

Etch polymer (step 2): The plasma gas is then switched to SF_6 that isotropically etches silicon (like typical RIE). Ions from the plasma bombard the surface of the wafer, removing the polymer. Increased ion energy in the vertical direction results in a much higher rate of removal of fluorocarbon from surfaces parallel to the wafer surface.

Etch silicon (step 3) : Following selective polymer removal, the silicon surface at the base of the trench is exposed to reactive fluorine-based species that isotropically etch the unprotected silicon. The remaining fluorocarbon polymer protects the vertical walls of the trench from etching.

Soft- Lithography: Creating a 'Soft' (e.g. PDMS) Mold

1. Start with a Master Mold

Master Mold

2. Cast and Cure PMDS

e.g. cure at 100°C for 45 min

What can you do with the 'Soft' Mold?

& Multilayer Soft Lithography

...From Simple Valving...

30 µm

...to Complex Systems: A microfluidic Chemostat

Lysis buffer

Peristaltic pump

BioMEMS in the Medical Field

In vivo...

Ex vivo...

Thursday, 18 May 2000 Microelectromechanical Systems (MEMS) Short Course @M. Adrian Michalicek, 2000 Slide 9 Image taken from : <u>http://mems.colorado.edu/c1.res.ppt/ppt/g.tutorial/ppt.htm</u>

Micro Needles

Solid MicroNeedles (coated, first generation)

Saw-tooth style

Ultrasharp Si (Citadel style) with a hole at the side

Polymer-based (PDMS)

Optical Pressure Sensors

Concept: A deformable membrane acts as a mirror in a Fabry–Pérot cavity

The CardioMEMS Sensor

Materials

- Copper-clad Liquid Crystal Polymer (LCP)
- Expanded polytetrafluoroethylene (PTFE)

Microfabrication Process

- Photolithography/ Wet Etching
- Bonding: The layers are aligned, assembled and laminated at 180°C under pressure

Expanded PTFE] [

Final Device: A self-packaged structure in which only a polymer outer surface is exposed to the environment

BioMEMS Actuators

Microfluidics/Lab-on-Chip Systems

Navier-Stokes Equations

In most microfluidic cases, Inertial & Gravity forces are negligible compared to Pressure & Viscous forces

N-S:
$$0 = -\nabla p + \mu \nabla^2 \vec{V}$$

EOF and Electrophoresis

EOF and Electrophoresis might compete each other ...

Do not forget to calculate absolute velocities:

$$\vec{u}_{abs} = \vec{u}_{ep} + \vec{u}_{EOF}$$

Capillary Electrophoresis for DNA Separation

Concept:

Use microfluidic channels (capillaries) to separate DNA fragments

Operation Principle

- a) Fill the channel intersection with sample solution
- b) Apply potential
 between buffer
 and waste inlets
 to initiate
 electrophoresis

Electric Field applied: 200-400 V/cm, Separation time: 1-2 min, Limiting factor: Joule Heating

Dielectrophoresis

An <u>Non-uniform</u> Electric Field exerts a <u>force</u> on a <u>uncharged</u>, <u>dielectric</u> object (e.g. particle)

The object does not have to be charged, <u>All dielectric objects exhibit dielectrophoretic activity!</u> <u>Application</u>

To move, trap, separate, neutral, dielectric objects (e.g. cells)

Fluidic Operations in Digital µfluidics

2. Cut & Merge (Split & Mixing)

The Herringbone Mixer

Concept:

Use set of ridges to create transverse vortices, (parallel to the cross section of the channel

3-Flow Mixing

• Channel Width = 200 μm , Channel Height = 70 μm ,Ridge Depth = 40 μm , Ridge Width ridge = 200 μm

• Mixing length 1-3 cm, Re $\sim 10^{-2}$

Integration. μ -lenses on μ -Actuators

Concept

Integrate electrostatic μ -actuators with μ -lenses (e.g. for scanning...)

μ-lenses are simply dispensed on the actuator ring and UV cured...
Electrostatic actuators (comb drives) are used as they require minimum power

Integration. Optical Detection and Excitation on-chip

The biochip integrates two modules:

• the **TIR-CT module** for Isolating, Trapping and Illuminating single WBCs

the μCSA module for imaging/counting the trapped WBCs

Some other exciting stories...

1. Single Molecule Real Time (SMRT) Sequencing

Motivation: <u>The \$1,000 Genome Project</u>

What if you could sequence the <u>entire</u> human genome in a single day, in a <u>single</u> experiment — for less than \$<u>1,000</u>?

Nanopores for DNA SMRT Sequencing

Concept

Flow DNA through a (~1nm) nanopore and measure the electric current

Currently under development by several companies (Oxford Nanopore Technologies, Noblegen)

Zero-mode Waveguides for DNA SMRT Sequencing

Zero-mode waveguides (ZMW) guides light into a volume that is small in all dimensions compared to the wavelength of the light: → Minimize background noise → Single Molecule Imaging

Under development by Pacific Biosciences

2. Large Scale Microfluidic Handling

Large-Scale Integration of μ -valves

SPECS

- 3574 on-chip μ -valves
- 22 outside control interconnects
- 1,000 individually addressable picoliter reaction chambers
- A column and row multiplexor are used to address each chamber

The microfluidic Multiplexor

Reference: 'Microfluidic Large-Scale Integration', Science, 2002, Vol. 298 no. 5593 pp. 580-584

Fluidigm Dynamic Array Integrated <u>F</u>luidic <u>C</u>ircuits (IFCs)

On-chip High-throughput Polymerase Chain Reaction (PCR)

Fluidigm chips have an on-chip network of microfluidic channels, chambers, and valves that automatically assemble up to 2,304 unique PCR reactions , decreasing the number of pipetting steps required by up to 100 fold.

Applications

- Gene Expression
- SNP Genotyping
- Targeted Resequencing
- Single-Cell Gene Expression
- Protein Crystallization

Watch Videos at: http://www.fluidigm.com/biomark-videos.html

3. Centrifugal Microfluidics

Commercialized by GYROS: http://www.gyros.com/en/company/about_gyros/index.html

The GYROS BioDisk

Key Idea:

Use hydrophobic Patches to block fluid flow. Use Centrifugal Forces to overcome these pads

water wowe.gyros.com/en/products/gyrolab_bioaffy_cds/gyrolab_bioaffy_cds/index.html

GYROS for Protein Quantification

CD for protein quantification

- 112 parallel measuring structures per CD
- 200 nL of sample and reagent per measurement
- time-to-result < 1h

BioMEMS: The future is Bright!

Hope you got Inspired!

...And please do not forget to evaluate the class...