BioMEMS (and Microfluidics)

History of MEMS Technology

BioMEMS is a relatively new field…

Image taken from: http://www.rfmems.net/a/MEMS/20100411/58.html

SILICON & ITS DERIVATIVES

Silicon(Si) Silicon Dioxide - SiO₂ (glass) Silicon nitride (Si_xN_y)

….

• Mechanical Reliability

- Performance
- IC compatibility

METALS

Platinum Silver Chrome and Gold Indium Tin Oxide (ITO)

…

BioMEMS Materials

• Increased Functionality • Integration

(sensors & actuators)

POLYMERS

Photosensitive Polymers (e.g. SU-8) Polydimethylsiloxane (PDMS) Parylene PS PMMA …

• Biocompatibility

• Cost

- Surface Modification
- Disposability (e.g. single use devices)
- Rapid Prototyping

Microfabrication Consists of 3 Major Steps: Deposition, Patterning, Removal

- **1**. Select a Substrate (e.g. a silicon wafer)
- (usually a few-microns thick film)
- **3. DEPOSIT** PhotoResist (PR) (PR is photosensitive to UV radiation)
- **4. PATTERN** PR using light (LITHOGRAPHY)

- **5. REMOVE** the structural material
- **6. REMOVE** PR

DRIE of Si – Operation Principle

Etching is performed in cycles of 3 steps:

Deposit Polymer (step 1) : C₄F₈-based plasma is used to conformally deposit a few monolayers of PTFE-like fluorocarbon polymer across all surfaces

Etch polymer (step 2): The plasma gas is then switched to SF₆ that isotropically etches silicon (like typical RIE). Ions from the plasma bombard the surface of the wafer, removing the polymer. Increased ion energy in the vertical direction results in a much higher rate of removal of fluorocarbon from surfaces parallel to the wafer surface.

Etch silicon (step 3) : Following selective polymer removal, the silicon surface at the base of the trench is exposed to reactive fluorine-based species that isotropically etch the unprotected silicon. The remaining fluorocarbon polymer protects the vertical walls of the trench from etching.

Soft- Lithography: Creating a 'Soft' (e.g. PDMS) Mold

1. Start with a Master Mold

Master Mold

2. Cast and Cure PMDS

e.g. cure at 100oC for 45 min

What can you do with the 'Soft' Mold?

& Multilayer Soft Lithography

…From Simple Valving… …to Complex Systems: A microfluidic Chemostat

BioMEMS in the Medical Field

Ex vivo… In vivo…

Thursday, 18 May 2000 Microelectromechanical Systems (MEMS) Short Course @ M. Adrian Michalicek, 2000. Slide 9. Image taken from :<http://mems.colorado.edu/c1.res.ppt/ppt/g.tutorial/ppt.htm>

Micro Needles

Solid MicroNeedles (coated, first generation)

Saw-tooth style

Ultrasharp Si (Citadel style) with a hole at the side

Polymer-based (PDMS)

Optical Pressure Sensors

Concept: *A deformable membrane acts as a mirror in a Fabry–Pérot cavity*

The CardioMEMS Sensor

Materials

- Copper-clad Liquid Crystal Polymer (LCP)
- Expanded polytetrafluoroethylene (PTFE)

Microfabrication Process

- Photolithography/ Wet Etching
- Bonding: The layers are aligned, assembled and laminated at 180°C under pressure

Final Device: A self-packaged structure in which only a polymer outer surface is exposed to the environment

BioMEMS Actuators

Microfluidics/Lab-on-Chip Systems

Navier-Stokes Equations

In most microfluidic cases, Inertial & Gravity forces are negligible compared to Pressure & Viscous forces

$$
\mathsf{N}\text{-}\mathsf{S}\mathsf{:}\qquad 0=-\nabla p+\mu\nabla^2\overrightarrow{\mathbf{V}}
$$

EOF and Electrophoresis

EOF and Electrophoresis might compete each other…

Do not forget to calculate absolute velocities:

$$
\vec{\bm{u}}_{abs} = \vec{\bm{u}}_{ep} + \vec{\bm{u}}_{EOF}
$$

Capillary Electrophoresis for DNA Separation Concept:

Use microfluidic channels (capillaries) to separate DNA fragments

Operation Principle

- a) Fill the channel intersection with sample solution
- b) Apply potential between buffer and waste inlets to initiate electrophoresis

Electric Field applied: 200-400 V/cm, Separation time: 1-2 min, Limiting factor: Joule Heating

Dielectrophoresis

An Non-uniform Electric Field exerts a force on a uncharged, dielectric object (e.g. particle)

The object does not have to be charged, All dielectric objects exhibit dielectrophoretic activity! Application

To move, trap, separate, neutral, dielectric objects (e.g. cells)

Fluidic Operations in Digital µfluidics

2. Cut & Merge (Split & Mixing)

The Herringbone Mixer

Concept:

Use set of ridges to create transverse vortices, (parallel to the cross section of the channel

3-Flow Mixing

• Channel Width = 200 μ m, Channel Height = 70 μ m, Ridge Depth = 40 μ m, Ridge Width ridge = 200 μ m

• Mixing length 1-3 cm, Re $\sim 10^{-2}$

Integration. µ−**lenses on** µ−**Actuators**

Concept

Integrate electrostatic µ-actuators with µ-lenses (e.g. for scanning...)

• ^µ*-lenses are simply dispensed on the actuator ring and UV cured…* •*Electrostatic actuators (comb drives) are used as they require minimum power*

Integration. Optical Detection and Excitation on-chip

The biochip integrates two modules:

• the **TIR-CT module** for Isolating, Trapping and Illuminating single WBCs

• the µ**CSA module** for imaging/counting the trapped WBCs

Some other exciting stories…

1. Single Molecule Real Time (SMRT) Sequencing

Motivation: The \$1,000 Genome Project

What if you could sequence the entire human genome in a single day, in a single experiment $-$ for less than \$1,000?

Nanopores for DNA SMRT Sequencing

Concept

Flow DNA through a (∼*1nm) nanopore and measure the electric current*

Currently under development by several companies (Oxford Nanopore Technologies, Noblegen)

Zero-mode Waveguides for DNA SMRT Sequencing

Zero-mode waveguides (ZMW) guides light into a volume that is small in all dimensions compared to the wavelength of the light: **→ Minimize background noise → Single Molecule Imaging**

Under development by Pacific Biosciences

2. Large Scale Microfluidic Handling

Large-Scale Integration of µ**-valves**

SPECS

- 3574 on-chip µ-valves
- 22 outside control interconnects
- 1,000 individually addressable picoliter reaction chambers
- A column and row multiplexor are used to address each chamber

The microfluidic Multiplexor

Reference: 'Microfluidic Large-Scale Integration', Science, 2002, Vol. 298 no. 5593 pp. 580-584

Fluidigm Dynamic Array Integrated Fluidic Circuits (IFCs)

On-chip High-throughput Polymerase Chain Reaction (**PCR**)

Fluidigm chips have an on-chip network of microfluidic channels, chambers, and valves that automatically assemble up to 2,304 unique PCR reactions , decreasing the number of pipetting steps required by up to 100 fold.

Applications

• …

- Gene Expression
- SNP Genotyping
- Targeted Resequencing
- Single-Cell Gene Expression
- Protein Crystallization

Watch Videos at: http://www.fluidigm.com/biomark-videos.html

3. Centrifugal Microfluidics

Commercialized by GYROS: http://www.gyros.com/en/company/about_gyros/index.html

The GYROS BioDisk

Key Idea:

Use hydrophobic Patches to block fluid flow. Use Centrifugal Forces to overcome these pads

water Ividvic. Www.gyros.com/en/products/gyrolab_bioaffy_cds/gyrolab_bioaffy_cds/index.html

GYROS for Protein Quantification

CD for protein quantification

- 112 parallel measuring structures per CD
- 200 nL of sample and reagent per measurement
- $time-to-result < 1h$

BioMEMS: The future is Bright!

Hope you got Inspired!

…And please do not forget to evaluate the class…