

Colloidal Systems

(Lecture 1)

George Petekidis IESL-FORTH & Department of Materials Science and Technology, University of Crete, Heraklion, Crete, Greece georgp@iesl.forth.gr

IoP, Durham, April 2017

<u>Outline:</u>

- Examples-Applications
- Main phenomena Forces Time scales
- Phase behavior: Thermodynamic phases, Metastable states (glasses and gels)
- Microscopic Dynamics (Scattering-Microscopy)
- Mechanical properties (Rheology) -> 2nd lect.
- Rheology of suspensions and glasses -> 2nd lect.
- Rheology of attractive colloids and gels -> 3nd lect.

Colloidal systems

<u>Outline:</u>

Examples-Applications

- Main phenomena Forces Time scales
- Phase behavior: Thermodynamic phases, Metastable states (glasses and gels)
- Microscopic Dynamics (Scattering-Microscopy)
- Mechanical properties (Rheology)

Example: Particles with size few nm to few µm suspended in a liquid

Paints, Inks, lubricants, shampoo, foodstuff, blood, ...

Biological systems and applications: Protein crystallisation, macromolecular crowding in biological cells, drug release, etc

Figure 1 Crowded interior. This three-dimensional reconstruction shows part of the cytoplasm of an intact molile Dicrystellium discoideaue. cell. The orange linear complexes are actin filaments: ribosomes and other macromolecular complexes are in grey; membranes are in blue. Reprinted with permission from ref. 3.

biomaterials

Colloidal Systems

Which systems are colloidal?

<u>General Definition:</u> Two immiscible component mixtures

Dispersed phase (gas, liquid, solid) in suspending medium (gas, liquid, solid)

<u>Size of dispersed particles: ~10 nm to ~5 µm</u>

Brownian motion keeps

them from sinking

 $\Rightarrow k_B T > m_B g R$ $\Rightarrow radius \ R \le 1 - 5 \ \mu m$

Examples:

Solid particles suspended in a liquid (paints, blood, milk ...) Liquid particles in a liquid medium (emulsions,...) Solid particles in gas (aerosols,...) Gas in liquid (foams,...).... etc.... all combinations .. but one.

States: Liquids, Crystals, Glasses, Gels

Concentrated: Colloidal liquid or solid

The middle world: Mesoscopic phenomena

Brownian Motion : "The restless heart of matter and life" M.D. Haw

atomic world

0 nanometer

100 picometers 0.2 -

Nucleus of the carbon atom.

10⁻¹⁴ meters

10 femtometers 0.2 -

"Colloids as large atoms" (P. N. Pusey)

- Collection of interacting particles can tune interactions
- Can reach thermodynamic equilibrium colloidal gases, liquids and solids
- Can be trapped in metastable, non-ergodic states- glasses, gels

•Can study phenomena of generic interest: crystallization, glass formation and melting, ageing etc. Colloidal solids are weak and "slow"

Sterically-stabilised polymethylmethacrylate (PMMA) colloidal "hard spheres"

- Suspend in mixture of organic liquids nearly transparent samples even at high concentrations
- No attraction, nearly hard-sphere repulsion
- Radius $R \approx 0.2 \text{ to } 1 \mu m$

"Plastic Brownian billiard balls"

Other "hard" spheres: Silica particles (small steric layer, PS particles (charged stabilized + salt to screen interactions)

Uniform silica microspheres (1 μm diam, × 10,000).

Phase behavior

Dynamics of Crystallization

Non-ergodic states (glasses, gels)

Flow of glassy and crystalline molecular systems

Metallic glasses

The role of defects. (Top) In crystals, flow is determined by dislocations,

"Colloid engineering"

- New materials, e.g. photonic or phononic crystals from colloidal precursors
- high precision filters, controlled porosity substrates from colloidal precursors.

Scanning electron microscope pictures of dried sample

(b)

Binary Colloidal Crystal $AB_2 \quad R_B / R_A = 0.58$

Shear induced hard-Sphere FCC Crystal

R.M. Amos et al., PRE **61**, 2929 (2000)

- Nanocomposites (colloids in polymeric matrices) photovoltaics and other applications
- Magnetic particles in 2D,

Magneto-rheological fluids

Primary ZnO nanoparticles

Chu et al. Adv. Materials, 2007

• **Optofluidics (flow induced structures for optical applications)**

NATURE|Vol 442|27 July 2006|doi:10.1038/nature05060

Developing optofluidic technology through the fusion of microfluidics and optics

Demetri Psaltis¹, Stephen R. Quake² & Changhuei Yang¹

Applications: Rich Flow properties (colloids, grains, emulsions, etc)

Wagner and Brady

Non-Newtonian fluids: thixotropy - rheopexy

Applications of shear thickening

Liquid Armor Wagner, (Delaware)

http://www.youtube.com/watch?v=f2XQ97XHjVw

Outline:

- Examples-Applications
- Main phenomena Forces Time scales
- Phase behavior: Thermodynamic phases, Metastable states (glasses and gels)
- Microscopic Dynamics (Scattering-Microscopy)
- Mechanical properties (Rheology)

for colloids time to diffuse their own radius : $t \approx 1ms...1s$

Large particles => Slow diffusion

J. Perrin (Nobel prize, 1926) Used Brownian motion to calculate Avogadro number, $N_A (=R/k_B) =>$ proved existence of molecules

Mean square displacement of a particle of radius R $<\Delta r(t)^2 >= 6Dt$ Einstein-Smoluchowksi (1905), for t>t_B = $\frac{m}{6\pi\eta R}$ $D_0 = \frac{k_B T}{6\pi\eta R}$ Stokes-Einstein-Sutherland diffusion coefficient

Figure 1.2. Jean Perrin's data, showing the location of colloidal particles released from the center

Sedimentation velocity

$$V_0 = \frac{2}{9} g R^2 \frac{\Delta \rho}{\eta}$$
, isolated sphere

For dilute concentrations $< \sim 10\% =>$ Hydrodynamic interactions (two body) => slower sedimentation $\langle V \rangle = V_0 (1 - 6.55\phi)$, Batchelor (1972)

Large particles => Fast sedimentation

Deviations from Batchelor's prediction at higher $\phi =$ Multi-particle HI increase velocity

Forces - Interactions

c)

nearly hard spheres

Attractive (sticky spheres)

In bad solvent

Van der Waals attractions

Charged colloids (DLVO potential)

Repulsive colloids: From hard to soft interactions

Hard spheres (PMMA, silica particles etc.)

Core-shell microgels: (example PS-PNIMAM)

Ultra soft multiarm star polymers or Star-like micelles

Polymer grafted particles

Crosslinked microgels

Charged particles

van der Waals forces (usually attactive)

London or dispersion forces between two induced (fluctuating) dipoles

Interaction between 2 individual dipoles

$$U_{vdW}(r) = -\frac{C}{r^6}$$
, with $C = \frac{3}{4} \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \alpha^2 \hbar \omega$

Integrating for colloidal particles

Interaction per unit surface, between 2 semi-infinite solid planes at distance H:

$$U_{vdW}(H) = -\frac{A}{12\pi H^2}$$
, with $A = \pi^2 \rho^2 C$, Hamaker constant (usually A>0)

Interaction between 2 spheres of radius R, at surface-surface distance H:

$$U_{vdW}(H) = -\frac{AR}{12H} \left[1 + \frac{3H}{4R} + 2\frac{H}{R} \ln(\frac{H}{R}) \right], \text{ for } H \ll R$$

or
$$U_{vdW}(r) = -\frac{16Aa^{\circ}}{9r^{6}}, \text{ for } r >> R$$

Interactions Charged particles

Screened Coulomb repulsions in the presence of counter-ions

Diffuse double-layer model of Gouy & Chapman

Interaction potential between 2 planes

(semi-infinite solid planes):

$$U_{Cb}(H) = \frac{64n_0k_BT}{\kappa} \tanh^2\left(\frac{ze\psi_0}{4k_BT}\right) \exp(-\kappa H)$$

with n_0 the ion number density, z their valence, ψ_0 the surface potential,

and

 $\kappa^{-1} = (\frac{\varepsilon \varepsilon_0 k_B T}{2e^2 n_0 z^2})^{1/2}$ the Debye Screening length

Interaction potential between 2 spheres: $U_{Cb}(H) = 2\pi \varepsilon R \psi_0^2 \exp(-\kappa H)$ for $\kappa R < 5$

v

(VR)e

Interactions Charged particles

Charged colloids – Total interaction potential DLVO (Derjaguin, Landau, Verwey and Overbeek)

 $\mathbf{U}_{\text{DLVO}}\left(\mathbf{r}\right) = \mathbf{U}_{\text{vdw}}(\mathbf{r}) + \mathbf{U}_{\text{cb}}(\mathbf{r})$

Characteristics:

Primary/secondary minimum=>irreversible/reversible aggregation

Repulsive barrier => particle stabilization

Increasing ion concentration <= e.g. addition of salt

Weakening of repulsive interactions => decrease of Debye screening length => lowering of the repulsive barrier

half separation Barrier zero @ Critical coagulation concentration (ccc) :

$$c.c.c.\left[mol/lt\right] = \frac{\left(4\pi\varepsilon_{0}\varepsilon\right)^{3}0.107\left(k_{B}T\right)^{5}}{N_{A}A^{2}\left(ze\right)^{6}} \tanh^{4}\left(\frac{ze\psi_{0}}{4k_{B}T}\right)$$

Multiarm Star Polymers as model soft colloids

$$\frac{f(r)}{kT} = \begin{cases} (5/18)f^{3/2}(1+\sqrt{f}/2)^{-1}(\sigma/r)\exp\left[-\sqrt{f}(r-\sigma)/2\sigma\right] \\ (5/18)f^{3/2}(1+\sqrt{f}/2)^{-1}(\sigma/r)\exp\left[-\sqrt{f}(r-\sigma)/2\sigma\right] \end{cases}$$

good solvent: Likos, Macromolecules, 2008

Likos, Loewen, Richter, PRL, 1998

Depletion Interactions: Attractions in colloid-polymer mixtures

Induce attraction between the particles by adding non-adsorbing polymer chains "Depletion": - Unbalanced osmotic pressure pushes particles together

- Overlap of depletion zones gives polymer more free volume (higher entropy)

Particle radius RPolymer radius of gyration r_g Overlap zone L~ r_g

Asakura-Oosawa (AO) potential

- Gravitational: $F_{gravity} \approx R^3 \Delta \rho g$
- **Brownian:** $F_{Brownian} \approx k_B T / R$
- Electrostatic: $F_{coulomb} \approx \varepsilon \varepsilon_0 \zeta^2$
- Viscous (Stokes drag): $F_{viscous} \approx \eta R \upsilon$
- Van der Waals: $F_{VdW} \approx A_{eff} / R^2$
- Inertia: $F_{inertia} \approx \rho R^2 \upsilon^2$

Example: $R = 1 \ \mu\text{m}$, $\eta = 1 \ \text{cp} = 10^{-3}$ Pa s $\rho = 10^3 \ \text{kg/m}^3$, $\Delta \rho / \rho = 0.01$ $T = 20^{\circ} \text{C}$, $\upsilon = 1 \ \mu\text{m/s}$ $A_{\text{eff}} = 10^{-20} \text{Joule}$, $\zeta = 50 \ \text{mV}$ $g = 10 \ \text{m/s}^2$, $\varepsilon = 100$, $\varepsilon_0 = 8.85 \ 10^{-12} \text{C/Vm}$

ratios of forces:

 $\frac{F_{coulomb}}{F_{Brownian}} \approx 100$ $\frac{F_{vdW}}{F_{Brownian}} \approx 1$ $\frac{F_{viscous}}{F_{Brownian}} \approx 1$ $\frac{F_{gravity}}{F_{viscous}} \approx 0.1$ $\frac{F_{inertia}}{F_{viscous}} \approx 10^{-6}, (=\text{Re})$

Outline:

- Definitions-Examples-Applications
- Main phenomena Forces Time scales
- Phase behavior: Thermodynamic phases, Metastable states (glasses and gels)
- Microscopic Dynamics (Scattering-Microscopy)
- Mechanical properties (Rheology)

Alder & Wainwright(1957) Wood & Jacobson (1957) Hoover & Ree (1968) <u>Entropy Driven Crystallisation</u> Crystal has *higher* entropy than metastable fluid at same concentration

Experiments: Pusey, van Megen, Nature, 1986

Hard-sphere colloidal crystals and glasses

Fluid *φ* < 0.494 Fluid + Crystal Crystal $\phi > 0.545$

Glass $\phi > 0.58$

Decreasing temperature (thermotropic)

or increasing concentration (Lyotropic)

Entropy driven ordering: Isotropic-nematic transition in Hard rods

Phase behavior – Soft Multiarm Star colloids

Watzlawek, PRL(1999), Foffi, PRL (2003)

Theoretical phase diagram: Liquid, crystal phases, glasses

Phase behavior of repulsive colloids

Cloitre, 2000

Russel et al. (1989)

Long range repulsions =>

Liquid-crystal transition, coexistence and glassy states @ much lower φ than HSs

Phase diagram: Depletion attractions

Schematic experimental phase diagram (colloid-polymer mixtures)

For size ratio, $\xi > 0.25 =>$ triple coexistence

Increasing volume fraction

Free clusters

Interconnected networks

compact clusters -> attractive glass

Low volume fractions (ϕ <0.2) percolating network Intermediate volume fractions (0.2-0.5):

Interplay with phase separation: •Arrested phase separation •or equilibrium gels High volume fractions (φ>0.58) => attractive glasses

Aggregate structures in 3D and 2D

n=number of particles within distance R from center of floc d_f = fractal dimension

High attraction strength=> Diffusion Limited aggregation (DLCA): d_f = 1.7-1.8

Low attraction strength=> Reaction Limited aggregation

(RLCA): d_f = 2.0-2.1

Weitz and Huang, PRL 1984

Macroscopically percolated homogenous structure

Figures from Liu et al., PRL 96 (2006)

Heterogeneous structure that is arrested due to attraction

Ageing => coarsening of colloidal gel with waiting time

FIG. 5. Evolution of particle microstructure over time for (a) top row, 5 kT gel and (b) bottom row, 6 kT gel. The gel in each snapshot is older than the previous image as indicated.

Brownian Dynamics simulations, ϕ =0.2,

Zia et al, J. Rheol. 2014

Outline:

- Definitions-Examples-Applications
- Main phenomena Forces Time scales
- Phase behavior: Thermodynamic phases, Metastable states (glasses and gels)
- Microscopic Dynamics (Scattering-Microscopy)
- Mechanical properties (Rheology)

Microscopic Structure and Dynamics

Light scattering (reciprocal space)

Probe fluctuations at scattering wave vector q. $q = 4\pi n/\lambda \sin(\theta/2)$

<u>Measure structure and particle dynamics</u> of polymers, colloids, emulsions

Optical Microscopy (direct space) Measure structure and particle dynamics

State of the art: Fast fluorescence confocal microscopy follow dynamics also under shear

(in-cage)

(Van Megen, PRE, 1999)

Volume fraction dependence

In-cage diffusion decrease towards zero @ rcp ($\varphi=0.64$)

Long-time (out of cage) dynamics slow down with waiting time near the glass transition

Soft Colloids - Dynamics approaching the glass

t (s)

END of Lecture 1

- Definitions-Examples-Applications
- Main phenomena Forces Time scales
- Phase behavior: Thermodynamic phases, Metastable states (glasses and gels)
- Microscopic Dynamics (Scattering-Microscopy)
- Mechanical properties (Rheology) => lecture 2

Colloidal systems

Study questions (Lecture 1)

- 1. Define colloidal systems. Why are colloidal particles defined by size limitations from nanometers to micrometers?
- 2. What is the phase diagram of hard spheres, and how is it changed for soft polymer coated particles?
- 3. What is the role of a polymer in colloidal dispersion stability for a) Grafted or adsorbed polymer b) Dissolved, non-adsorbed polymer?
- 4. Describe the interaction potential and the phase diagram of charged stabilized colloids.
- 5. Calculate the van der Waals interaction per unit area between two semi-infinite planes.
- 6. Determine the critical coagulation concentration (c.c.c) (in mol/L) for two planar surfaces (*use approximately the vdW and screened Coulomb interaction between semi-infinite planes*)
- 7. Calculate the time needed for a colloidal particle with radius, R=0.5 μ m to diffuse it own diameter in water at 25 C in the dilute limit and at a volume fraction of ϕ =0.1
- 8. Calculate the sedimentation velocity of a particle with R=2 μ m and ρ =1.2g/cm³ in the dilute limit and at ϕ =0.05 and 0.3.
- 9. A colloidal glass of hard spheres with R=100 nm, at φ =0.6 has G'= 80 Pa at ω =10 rad/s and T=20 °C. Calculate the G' for a glass at the same φ in the case of HS with R=500 nm at T=40 °C. At which frequency ω we should make the comparison?
- 10. Calculate the ratio of main forces in a colloidal suspension with:

 $R = 1 \,\mu\text{m}, \quad \eta = 1 \text{cp} = 10^{-3} \text{ Pa s}, \\ \rho = 10^{3} \text{ kg/m}^{3}, \\ \Delta \rho / \rho = 0.01, \\ T = 20^{\circ}\text{C}, \\ \upsilon = 1 \,\mu\text{m/s}, \\ A_{\text{eff}} = 10^{-20} \text{Joule}, \\ \zeta = 50 \text{ mV}$ $g = 10 \text{ m/s}^{2}, \\ \varepsilon = 100, \\ \varepsilon_{0} = 8.85 \, 10^{-12} \text{C/Vm}$

Colloidal systems

Study questions cont. (Lecture 1)

- 11. You are trying to flocculate a colloidal dispersion in a plant-size operation at 500 K using calcium oxide (CaO). In your laboratory, all you have available at the moment is sodium chloride (NaCl). At room temperature, you find that 2 mol/L NaCl is necessary to induce flocculation. Estimate the concentration of CaO necessary to flocculate the dispersion in your plant operation.
- 12. Determine the crystal-liquid coexistence regime for charged stabilized particles with a Debye screening length $1/\kappa = 10$ nm and radius R= 150 nm. Assume the particles behave as hard spheres with an effective radius R + $1/\kappa$.
- 13. What is the difference between the behavior of power law fluids and Bingham bodies at low stress levels?
- 14. Can you rationalize the dependence of the Debye screening length on the thermal energy, and ion concentration?
- 15. What is a colloidal glass, a colloidal gel and an attractive glass?

Further reading (Lecture 1)

- W.B. Russel, D.A. Saville, W.R.Schowalter, Colloidal Dispersions, Cambridge University Press, 1989
- R. J. Hunter, Foundations of Colloid Science, Oxford, University Press, New York, 2001
- D. F. Evans, H. Wennerström, The Colloidal Domain, Where Physics, Chemistry, Biology and Technology meet, John Willey and Sons, New York, 1999.
- M.D. Haw "Middle World: The Restless Heart of Matter and Life", 2006

Reviews:

- P.N. Pusey, in Les Houches Session 51, ed. D. Lesvesque, J. P. Hansen and J. Zinn-Justin, North-Holland, Amsterdam, (1991).
- W. C. K. Poon, J. Phys.: Condens. Matter, (2002), 14, R859–R880.
- C. N. Likos, Physics Reports 348, (2001) 267-439