Natural processes of photosynthesis have increasingly
inspired the fabrication of nanostructured molecular materials
with advanced light-harvesting and electron-transfer features. [1-6]
In this context, supramolecular chemistry allows
diverse and disparate molecular building blocks to be
amalgamated into highly ordered architectures. These mimics the
key functions of the photosynthetic reaction center; light
harvesting, charge separation, charge transport, and catalysis. [7,8]
Porphyrinoids, the basic building block of chlorophylls,
have emerged as an exceptional class of light harvesters
and electron donors in such supramolecular electron
donor-acceptor hybrids. [9-12]
Natural photosynthesis
Artificial photosynthesis
- M. R. Wasielewski, Chem. Rev., 92, 435-461, (1992).
- R. E. Blankenship, Molecular Mechanisms of Photosynthesis, Blackwell Science, Oxford, U.K., 2002.
- D. Gust, T. A. Moore and A. L. Moore, Acc. Chem. Res.,
26, 198-205 (1993).
- H. B. Gray and J. R. Winkler, Annu. Rev. Biochem.,
65, 537-561, (1996).
- M. Grätzel, Journal of Photochemistry and Photobiology C: Photochemistry Reviews,
4, 145-153, (2003).
- T. Nakanishi, Supramolecular Soft Matter, Applications in Materials and Organic Electronics, John Wiley & Sons, New Jersey, 2011.
- D. M. Guldi, Chem. Soc. Rev., 31, 22-36, (2002).
- F. D’Souza, Handbook of Carbon Nanomaterials, Synthesis and Supramolecular Systems, World Scientific Publishing Co. Pte. Ltd, Singapore, 2011.
- Manas K. Panda, Kalliopi Ladomenou, and Athanassios G. Coutsolelos, Coordination Chemistry Reviews
256(21-22), 2601-2627, (2012).
- K. Ladomenou, M. Natali, E. Iengo, F. Scandola, G. Charalampidis, A. G. Coutsolelos Coordination Chemistry Reviews,
305, 38-54, (2015).
- C. Stangel, C. Schubert, S. Kuhri, G. Rotas, J.T. Margraf, E. Regulska, T. Clark, T. Torres, N. Tagmatarchis, A. G. Coutsolelos, D. M. Guldi.
Nanoscale 7, 2597-2608, (2015).
- K. Ladomenou, V. Nikolaou, G. Charalambidis, A. G. Coutsolelos, Coordination Chemistry Reviews,
306, 1-42, (2016).