On the generation, characterization and applications of intense attosecond pulses

Paris Tzallas

IESL-FORTH, Heraklion, Crete, Greece. ptzallas@iesl.forth.gr

Real-time observation of ultra-fast dynamics in all states of matter requires temporal resolution on the atomic unit of time (24.189 αsec) (1 αsec =10⁻¹⁸ s). Tools for tracking such ultra-fast dynamics are ultra-short light pulses. During the last decade, continuous efforts in ultra-short pulse engineering led to the development of light pulses with duration close to the atomic unit of time. Attosecond (αsec) pulses have been synthesized by broadband coherent extreme-ultraviolet (XUV) radiation generated by the interaction of gases or solids with an intense IR fs pulse. For the realization of studies of ultra-fast dynamics intense αsec pulses are preferable. If the pulses are intense enough to induce a non-linear process in a target system, they can be used for ultra-fast dynamic studies in an XUV pump-XUV-probe configuration.

Here, I'll review on the recently developed approaches, on the generation and the temporal characterization of intense αsec pulses. The utilization of these pulses on tracking ultrafast dynamical processes in an XUV-pump-XUV probe configuration will be also presented.