

First (simplistic approach):

We know the size of monomer m, and the degree of polymerization N

Hence, contour length is L=mN

But this is rather the maximum length which cannot be ever realized. Polymer has a lot of degrees of freedom

Also, stereochemical considerations suggest and average bond angle a

Hence, $L_{max}=mN \cos(a/2)$

To get reasonable statistical averages, account to chain conformation (here consider <u>flexible</u> chains)

A measure of (static) flexibility: persistence length

Note: what matters is the ratio I/L, with L the contour length (e.g., DNA is semiflexible) Indirect link to ability of chain to entangle

Dynamic flexibility and glass transition temperature Tg

Methane: Typical fluctuations 3% in r_{C-H} and 3° in HCH Ethane: $\frac{H}{H} \sim C + C + H$ Almost free rotation around C-C: 3 conformations Polyethylene: $H = C - C = C = 3^n$ possible conformations (n~10⁴): Statistics Energy **AE**

Static flexibility (PE, DNA) (persistence length)

> Dynamic flexibility (structure in motion - T_a)

dihedral angle **b**

Molecular models of polymer chains: Ideal chain (non-interacting, 'fantom' solvent)

Approximation: the Kuhn segment (and equivalent chain)

- No volume, no interaction between the segments
- equivalent chain with N Kuhn segments
- each with fixed length (=b)
- Bond between two monomers requires specific angle. Bond between two Kuhn segments can take any angle value (freely joint).

W. Kuhn 1899-1963

This approximation allows us to use the so-called Random walk model

Molecular models of polymer chains: average end-to-end distance

Random walk model:

$$\left(\vec{R} = \sum_{i=1}^{N} \vec{b}_{i} \\ \left\langle \vec{R} \right\rangle = \sum_{i=1}^{N} \left\langle \vec{b}_{i} \right\rangle = 0 \\ \left\langle \vec{R}^{2} \right\rangle = \sum_{i=1}^{N} \sum_{j=1}^{N} \left\langle \vec{b}_{i} \vec{b}_{j} \right\rangle = Nb^{2}$$

$$R^{2} = C_{\infty}Nb^{2}$$

$$\left\langle \left|\underline{R}\right|^{2} \right\rangle = R^{2} = Nb^{2}$$

R

0

0

Quadratic distance R²:

$$\left\langle \vec{R}^{2} \right\rangle = \left\langle R^{2} \right\rangle = \frac{1}{p} \sum_{i=1}^{p} \vec{R}_{i}^{2}$$
 p: all possible configurations

For each configuration:

$$\vec{R}_{i} = \sum_{j=1}^{N} \vec{b}_{j} \implies R_{i}^{2} = \sum_{j=1}^{N} \vec{b}_{j} \vec{b}_{j} + 2\sum_{j < k} \vec{b}_{j} \vec{b}_{k} = \sum_{j=1}^{N} \vec{b}_{j} \vec{b}_{j} + 2\sum_{j < k} b^{2} \cos\left(\theta_{jk}\right)$$
$$\vec{R}_{i}^{2} = R_{i}^{2} = \vec{R}_{i} \cdot \vec{R}_{i} = Nb^{2} = 0$$

Chemical chain with N_m monomers, each of size m, or N Kuhn segments each of b

n

200

Single Gaussian chain (conformation): Size distribution

Random walk statistics (same step R)

Probability density function (for end-end distance):

Can I define the end-to-end distance of any polymer unambiguously?

Do I need another measure of length?

Radius of gyration

(also for nonlinear polymers)

 $< R_g^2 >= \frac{1}{N^2} \sum_{i=1}^N \sum_{j=1}^N < (R_i - R_j) >^2$

Ideal

$$< R_g^2 >= \frac{1}{N^2} \int_{0}^{N} \int_{u}^{N} < (R(u) - R(v))^2 > dv du = Nb^2 / 6$$

<u>Rod</u>: L=Nb $<R_g^2>=L^2/12$

How many characteristic lengths exist in a polymer?

Why?

What dictates the form (shape) of a flexible chain?

Think of degrees of freedom

What is the effect of solvent?

The effects of solvent quality (temperature)

Monomer pair interaction potential in solution; Boltzmann factor; f-Meyer function; excluded volume

Athermal, good: v>0 ; theta: v=0 ; bad, non-solvent: v<0 Athemal: $v_{max}=b^3$ non-solvent: $v_{min}=-b^3$

Poor solvent

<u>Thermal blob</u> $\xi_T \approx b g_T^{1/2}$

Rubinstein, Colby, Polymer Physics 2003

The effects of solvent quality (temperature)

Theta solvent (T_{θ}): $R \sim N^{1/2}$

P. J. Flory 1910-1985

Interactions:

Good solvent: $T > T_{\theta}$, $R \sim N^{3/5}$ swellingPoor solvent: $T < T_{\theta}$,shrinkage (phase separation)

Range: Athermal, good, theta, bad, non-solvent

Key idea: blobs, excluded volume Approach: minimize free energy to get size

$$F = F_{int} + F_{ent} \approx kT \left(v \frac{N^2}{R^3} + \frac{R^2}{Nb^2} \right) \qquad \frac{\partial \Delta F}{\partial R} = 0 \qquad R_F \approx v^{1/5} b^{2/5} N^{3/5}$$

Rubinstein, Colby, Polymer Physics 2003

Application:

thermoresponsive polymers (e.g., PNIPAM microgels)

Figure 18 Size of PNIPAM microgels with different cross-linker content (increasing from top to bottom) vs. temperature. Reproduced with permission from Figure 1 in Senff, H.; Richtering, W. *Colloid Polym. Sci.* 2000, *278*, 830.¹⁴¹

Chain elasticity:

"Gedankenexperiment":

Pull the chain with hands by exerting a force *f*.

The chain deforms due to its elasticity – it changes conformation It exerts on hands a force -f.

This force relates to the change of conformation (thermodynamics) Force is derivative of (free) energy to distance Relate force to deformation via Hooke's law

Entropy elasticity

Why we call the chain elasticity "entropy" elasticity?

Explain why, for the same applied stress, a metal deforms far less than a polymer

Under a certain applied load (weight), a polymer chain deforms. We then increase the temperature. Is the (fractional) deformation going to change and how?

Rubber elasticity (main chains, crosslinked):

We consider an affine deformation with the principal directions aligned with the coordinate system and principal deformations $\lambda_1 \ \lambda_2 \ \lambda_3$ Use Flory's conjecture (ideal chain statistics in melt)

Rubber elasticity (main chains, crosslinked):

$$\sigma = 3kTv\frac{\Delta l}{l}$$

v = number concentration of elastically active elements

$$G \approx \nu kT$$
 $\nu \sim 1/\xi^3$

$$G \approx \frac{kT}{\xi^3}$$

Relates modulus to size

Green and Tobolsky (1919-1972)

Can I probe the concentration of junctions in an associating polymer or a crosslinked rubber? How?

Can I probe characteristic length scales in polymers? How? What is their meaning?