Basic concepts in Soft Matter
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Establish the relationship between
deformation-rate and stress



http://www.dsm.com/en_US/html/dep/xantar.htm

Important scales

Mass

Length

Time

Energy (modulus)



Fractal concepts and self-similarity

3-dimensional ball 2-dimensional sheet of paper
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Molecular Weight
You have:
100 cherries at 9 g (each)
6 bananas at 180 g
4 watermelons at 1.2 kg
What is the average weight of a piece of fruit?




Time and length scales: Collective response + Self-Assembly
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Examples of length and time scales

Length (m)

— 1DD

— {02
- 103
— {04
- 102
{06
- 107

1 (0-5

1 (-10

Organism lifetime

Blue whale
Py
DNA (1) iy .
& Cell lifetime
Egg s
- e
TR LS . .
T Protein folding
= Polymer relaxation,
Animal cells | @ nerve pulse
i Bacteria 4 == o eee
, O ny Nanocolloid diffusion
s [(E
- : @
= & Viruses 1 _
. ro— Surfactant dynamics
= Proteins J,;*‘"" Y

Molecules . &** Molecular collisions

Atoms ©) o
: Atomic vibrations

106 =
104 =
102 =
100 =
102 =
104 =
106 =
108 =
1D-1CI—
10712 =

10-14

Time (s)



Description polymers: Coarse graining and the Importance of the length scales
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Elementary continuum definitions:
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;i 8 Extension
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Material elastic energy

A
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Great sensitivity to external stimuli (mechanical stress)
Soft matter: small stimulus induces large effects (deformation)




Elastic solids: constant modulus ‘SARALT A
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Hooke

Newtonian fluids: constant viscosity

Newton O

y : deformation rate Y

Non-Newtonian fluids:

o=nty)y




Classify fluids from viscosity curve

T

Viscosity
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Commonly encountered shear rates

Suspension

Sag and Leveling
Pouring

Mouthfeel

Dispensing

Pumping
Coating

Viscosity

Spraying
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Shear Rate
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Question:

How can | rationalize a shear rate of 103 s'1?

Think of coating:

Speed of rolling/coating?
Thickness of coating film?




Things can become much more complicated:

Complexity — chocolate as an example
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Even such simple and every-day substance as chocolate
has a quite complex structure and mechanical properties



Classify fluids from stress curve

O =1Y+0, Yieldstress
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Extrudate swell & wall slip Rod climbing (Weissenberg)
N Secondary flows (vortex)
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Fig. 1.3, Enbancemnont of firechose range by addition of small amouns of polyethylene axide o water,
(Phetograph, courvesy of Union Carbide Cocperationt.)




Semi-flexible biopolymers

16 micron length ~ 5-20 micron length

2 nm In diameter 12 nm in diameter
40 nm persistence length ~ 220 nm persistence length
Wormlike Micelle Actin

( polybutadiene-polyethyleneoxide )

10 — 50 micron length 2 — 30 micron length
~ 15 nm in diameter 7-8 nm in diameter
~ 500 nm persistence length ~ 16 micron persistence length



Architecture (molecular structure)
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Rigid Rod
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Controlled Hyperbranched
(Comb-burst ™)

Regular Dendrons Dendrimers

(Starburst®)




