UNIVERSITY OF CRETE

DEPARTMENT OF MATERIALS SCIENCE & TECHNOLOGY GRADUATE SHORT COURSE

COLLOIDAL DISPERSION RHEOLOGY

Professor Jan Mewis

Katholic University Leuven, Belgium

18,19,22,23,24 November 2010

FORTH main building Seminar Room 1 (above main entrance – first floor)

Classes start 10:00 am. Each day about 4 hours with break.

- 1) Introduction, rheolgical and colloid concepts
- 2) Hydrodynamic effects/Non-colloidal suspensions
- 3) Brownian hard spheres
- 4) Colloidally stable dispersions
- 5) Nonspherical particles
- 6) Flocculated systems
- 7) Rheological measurements of dispersions
- 8) Viscoelastic media (filled polymers, nanocomposites)
- 9) Special techniques applicable to dispersions

COLLOIDAL DISPERSION RHEOLOGY

Professor Jan Mewis

Katholic University Leuven, Belgium

(Crete, 18,19,22,23 November 2010)

1)	Introduction
	Rheological concepts
	Colloid concepts (if required)
	Some rheological phenomena of colloidal systems
2)	Hydrodynamic effects/Non-colloidal suspensions
	Motion of/around particles
	Viscosity of dilute systems (scaling, Einstein, Batchelor)
	Viscosity of concentrated systems (maximum packing, particle size distribution)
	Particle migration
3)	Brownian hard spheres
	Structure
	Brownian motion and flow, dimensional analysis
	Universal viscosity curves, scaling principles, the maximum packing problem
	Dynamic moduli, meaning of high frequency moduli, relaxation phenomena
4)	Colloidally stable dispersions
	Effects of electrostatic repulsion, screening length, hard sphere scaling, "softness" of
	interparticle interactions
	Steric repulsion, differences with electrostatic repulsion, effective hard sphere radii,
	relation between moduli and interparticle potential
5)	Nonspherical particles
	Motion during flow, structure
	Viscosity effects of aspect ratio, shear and extensional flow, in dilute and concentrated
	suspensions
	Colloidal nonspherical particles (rods and plates)
6)	Flocculated systems
	Description of the microstructure (fractals, percolation, gelation, glasses)
	Link between structure and rheology (viscosity curves, yield stress, moduli)
	Gels and glasses
	Time effects (ageing, thixotropy)
7)	Rheological measurements of dispersions
	Specific problems when measuring dispersions (particle size effects, wall slip,
	nonlinearities, etc.)
	Measurement procedures for yield stress and thixotropy
8)	Viscoelastic media (filled polymers, nanocomposites)
	Flow phenomena (drag force, migration, chaining)

Viscosity curves (use of effective shear rate), normal forces

Effect on dynamic moduli (relative moduli) Extensional flow (effect of particles on extensional viscosity and strain hardening) Steric stabilization in polymer melts Special phenomena in nanocomposites (Optional)

 9) Special techniques applicable to dispersions Large amplitude oscillations
Superposition flows
Microrheology